

 2008 Danube Case Study: Intel Corporation

1

Agile Project Development at Intel: A Scrum Odyssey
by Pat Elwer, Intel Corporation

Contributors included Tim Gallagher, Intel Corporation; Katie Playfair, Danube

Technologies, Inc.; Dan Rawsthorne, Danube Technologies, Inc.; and Michael

James, Danube Technologies, Inc.

ABSTRACT

In the microprocessor industry, the product development engineering (PDE) group

exists to provide the test collateral to support cost-effective device screening and

classification. Squeezed between the actual design teams and factory manufacturing

teams, PDE is often put under tremendous pressure without ultimate control of team

level deadline, scope, requirements, or deliverables.

To better coordinate the efforts of the sub-teams within PDE, seven teams

comprising approximately 50 people volunteered to pilot a more integrated approach

to product development. To organize this integration, the authors decided that Scrum

was the best project management framework to employ along with agile engineering

best practices. This paper describes the journey taken by the organization, its lessons

learned, and the results of its investment in Scrum.

INTRODUCTION

In the software engineering world of agile and Scrum implementation, a plethora of

best practices exist. Many of these involve small or medium-sized organizations using

small teams, developing software in object-oriented languages. The Oregon and

Pacific (OAP) PDE team is a large organization needing to implement Scrum and

agile across multiple teams, sites, cultures, and environments. Our work product is a

Test Program which runs on Automated Test Equipment (ATE). ATE has a

proprietary operating system and interface languages which prevent us from using

industry standard, off-the-shelf software validation solutions. In essence, we are

working in a proprietary language environment with no off-the-shelf unit test

framework and no offline testing capabilities. Additionally, we have a long history of

requirements thrash, over-committing, missed schedules, insane work weeks, poor

morale, and high turnover rates.

A long history in fabrication and manufacturing has resulted in a strong waterfall

culture at Intel, embraced widely as the best path to success. Teams are organized in

functional “silos” with regularly scheduled hand-offs of deliverables to other

Intel Corporation

(NASDAQ: INTC)
Santa Clara, Calif.
www.intel.com

Founded: 1968

Employees: 86,300

Annual revenue: $38.3B

Products: microprocessors,

flash memory, motherboard
chipsets, network interface
cards

 2008 Danube Case Study: Intel Corporation

2

functional silo teams. The result is that some teams carry an unusual burden at late

phases in the lifecycle and had very high turnover at the end of a project. Finally, each

team is comprised of domain experts whose skills seldom overlap with those of their

team members. It is therefore difficult to impossible to pair on tasks or share

responsibility within a team.

Despite all of these challenges, we wanted to move ahead with a different way of

managing and organizing projects to better unite test teams and smooth out the

delivery of our work product. We chose to introduce Scrum to the organization at the

outset of a project, when most of the work was development of pre-silicon

infrastructure and readiness work. If we could get Scrum to work during this first

phase, we felt the best practices learned in this relatively calm period of the project

would find their way into the more stressful execution phase — when daily work is

dependent on the health of actual silicon, dynamic external business conditions, and

the requirements of the Fabrication, Design, and Manufacturing customers.

PHASE 1: PREPARING FOR SILICON

The initial transition group included six teams and numerous sub-teams. As a first

step, we retained Danube Technologies, Inc. as a Scrum education and coaching

vendor. Approximately 20 group leads and technical leads attended a two-day

Certified ScrumMaster training course as an intense introduction to Scrum principles

and practices. Unfortunately, three senior managers missed the training and this

resulted in subsequent impediments throughout the transition process. Executive

sponsorship was critical to our success. Having our three most senior leaders absent

from the initial training led to gaps in their knowledge of the changes we were trying

to make.

After the training, participants attended a retrospective meeting and discussed,

without Danube representatives present, their thoughts, reservations, and

commitment level to a Scrum approach to project management. The team leaders

agreed to commit to three months of implementing Scrum principles and practices

“by the book” prior to questioning the effectiveness of the new process or attempting

to tailor it to Intel needs. A Process Action Team (PAT) was formed to monitor the

development of Scrum within the pilot teams and to provide support for process

questions. Even though agreement was there, I could already sense a split in the

organization into “pigs” and “chickens” in terms of supporting Scrum.

 2008 Danube Case Study: Intel Corporation

3

Group and team leads functioned as the Product Owners for all seven teams, while I

worked as the ScrumMaster. I felt strongly that Scrum was an important framework

to implement within these teams and I was willing to take the risk to champion it.

Although the result of taking this risk was positive, I nearly didn’t survive a full

quarter of ScrumMastering seven teams!

Working with Danube consultants Michael James and Dan Rawsthorne, we

determined that having volunteer ScrumMasters would be important to each team’s

success and to their own sanity. First, we worked with Intel management to make

sure that the role of ScrumMaster was valued in the performance appraisal system as

“real engineering work,” rather than administrative overhead. Secondly, those who

stepped up to take ScrumMaster roles did so on teams in which they did not have a

technical stake. This helped prevent any conflicts of interest between their own

technical projects and their facilitation responsibilities. Budget did not exist for

ScrumMasters to give up their own engineering work in favor of ScrumMaster work.

However, support was lent for a lighter change in product role for those who stepped

up to shepherd the process in ScrumMaster positions.

At the end of three months, there were three additional ScrumMasters to manage

seven teams. Additionally, an eighth team had volunteered to start using Scrum.

After approximately five months, scaling work across the Scrum teams became one

of the largest challenges. Prior to adding the additional five teams that were formed

throughout the remainder of the year, the organization needed more knowledge on

how to manage the dependencies between multiple teams and facilitate better inter-

team communication. Danube was again retained to develop a customized Scrum

scaling course for some of the original participants of the Certified ScrumMaster

course along with the senior managers who missed the first class. This day-long

training reviewed major principles of release planning, sprint planning, and, in

particular, scaling across multiple teams. We again took the “learn, try, inspect, and

adapt” approach to this scaling.

After learning a few “best practices” for scaling, we took the issue back to the teams

to try one of the scaling models from class and then tailored the approach to the

teams’ real world environments. After adding some roles to handle technical

 2008 Danube Case Study: Intel Corporation

4

dependencies and more layers of organization, the group was able to scale to 12

Scrum teams, each containing approximately five to nine developers, within a year.

Two of the primary aspects of successful organizational transitions that we discussed

with the Danube consultants were volunteerism and self-organization. Although

teams who committed to a three-month trial period of “by-the-book Scrum” were

asked to adhere to the core principles and practices, adoption was clearly more

important than adherence. A “please just try it” attitude from management resulted in

better buy-in from teams. After the three-month trial, teams were given the freedom

to organize themselves and inspect and adapt their approach every sprint. Although

the teams needed to work together, they were given as much freedom as possible to

determine what would work for them. Deviations were discussed, but not judged in

the PAT meeting with all POs and ScrumMasters each week. Our goal at this stage

was unity, not uniformity.

Visibility was also crucial to this process. An internal wiki allowed teams to document

what worked for them, what didn’t work well, and suggestions for best practices for

Scrum adoption.

Implementing Scrum “by the book” was an integral part of launching Scrum across

the teams. However, at an organization the size of OAP, it is necessary to conform to

certain organizational structures or requirements. After the three-month pilot period,

some modifications were made to fit Scrum into our culture and environment. First,

the team had to define which roles were most useful to their goals. We developed the

following role descriptions:

Business Owners: Senior managers or principal engineers charged with

oversight of multiple teams or overarching technical issues for all teams.

BOs set the roadmap milestones (Release Plan) and defined the ‘desired’

features at each milestone. Scrum teams still owned sizing and committing

to meet the feature milestones based on their velocity.

Product Owners: Typically functional group managers.

Technical Owners: Technical leads from each of the functional areas who

could collaborate on integration, dependency, and architectural issues to

 2008 Danube Case Study: Intel Corporation

5

ensure congruence between teams with dependent outputs. TOs held ad

hoc meetings to break down epics into sprint-able stories.

ScrumMasters: A cross-team engineer with no specific stake in the project

team he or she was ScrumMastering. This helped to curb the urge for the

ScrumMaster to meddle in the technical solution.

Teams: Team charged with one particular output of the test suite, rarely

with cross-functional team members. Almost always a functional silo team.

Transient: Group members with highly specialized skill sets needed by

multiple teams for only a sprint or two at a time. They came and went at

sprint boundaries.

Conduit: Team member who represents more than one person including

contractor supervisors or local members of a remote team. Conduits can

sign up for many more story points of work than a normal team member.

Story Owners: A technical expert with particular knowledge of how to

complete a story who can develop tasks and request the participation of

certain team members in completing those tasks. The one person you can

go to and ask, “What’s the status of this story?” and get the right answer

from, every time.

Finally, during this phase of product development, the overall group of Scrum teams

was essentially its own customer. We were only building infrastructure to support

silicon debug and manufacturing. There was no outside force requesting certain

features during the first year or so of the project. This made business value a difficult

metric for prioritization. Therefore, the POs and BOs tried to prioritize features with

a combination of estimated business value and general priority, mostly as a

dependency management strategy.

By the end of the first year, Scrum had taken root within the organization and

become the default framework for planning our work and managing our

requirements. The PAT had a wealth of data on which “tailorings” were and were not

working. Silicon loomed on the horizon. Would the process hold up under real

 2008 Danube Case Study: Intel Corporation

6

business pressure or would it get thrown out the window in favor of doing it the

“old” way?

PHASE 2: SURVIVING SILICON

First silicon is a tough time to be a product development engineer. If you mapped it

on the Stacey Diagram, it would be the most upper-right pixel in the chaos space!

When silicon arrives, all requirements are ambiguous and it takes a few weeks to

collect the necessary data on the silicon devices to determine the path the project will

take.

I decided to step back and “inspect and adapt” my organization’s approach to Scrum

based on what I saw happen at first silicon. What I saw really surprised me. I had one

Scrum team that reverted to its old habits. A few other Scrums decided that they were

done at fist silicon and disbanded gracefully. The rest clung to Scrum like a drowning

man to a life preserver.

Our two-week sprints were impossible to maintain in this environment and most

Scrum teams went to one-day sprints instead. They would meet for one hour every

day to plan the next 24 hours and review and reflect on the previous. Scrum’s four

meetings collapsed under the gravity of first silicon into a single meeting. However,

when I attended these meetings, I saw that Scrum’s core behaviors — such as

business value based prioritization, team sizing, not working outside the backlog, peer

updates and swarming, implementing process improvements and reviewing the work

product — were all happening, just on a much smaller, faster scale as knowledge of

the device was growing.

In the daily debug meeting, where all of the organization’s leaders and managers were

in attendance, I would hear any ad hoc request being made followed by a PO saying,

“Is there a story in the backlog for that?” I also saw many examples in which

developers would grab a stakeholder or PO and drag them to the test equipment to

witness that the content being added to their program met their acceptance criteria.

This period of intense debug and development went on for a few weeks. At the end

of that time, the surviving Scrums emerged intact and expanded their sprints back to

two weeks, like an accordion. The change was announced in the Friday Debug

meeting, occurred over the weekend, and the two-week sprints remain in effect today.

 2008 Danube Case Study: Intel Corporation

7

PHASE 3: PREPARING FOR MANUFACTURING

As the silicon became healthier and we prepared for the manufacturing ramp, I

noticed that the functional silo Scrums were being strained by handoffs in the post-

silicon environment. A handoff occurs whenever responsibility, knowledge, action,

and feedback are separated (Ward):

• One person decides what to do (responsibility);

• Another person defines how it will be done (knowledge);

• A third person implements it (action); and

• A fourth person validates the work (feedback).

Additionally, Conway’s Law states that organizations which design systems are

constrained to produce designs which are copies of the communication structures of

these organizations (Conway). I knew that cross-functional teams were part of “by-

the-book” Scrum and I felt that they would solve this particular impediment, but had

not found a workable solution for forming them within the organization.

During this time, I noticed a number of Task Forces being formed to deal with

silicon content issues. At Intel, a Task Force is a cross-functional team that is formed

in response to a crisis. If you are tapped to join a task force, it’s because you are an

expert. You are immediately responsible for the success of the Task Force, you drop

whatever else you are doing, and you can’t say no. I couldn’t see how to get the cross-

functional benefit of the Task Force without changing the organization’s structure.

I had coincidentally scheduled some Lean Product Development Training with Mary

and Tom Poppendieck for the team in this timeframe and the Lean training revealed

an important clue in how to use Scrum effectively in this phase:

Keep Functional Teams: These are useful organizational structures as
knowledge and deep technical expertise live here. They also give Scrum
team members a place to “come home to” between projects.

Create Cross-functional “Feature” Scrums: Functional teams loan
responsible experts to cross-functional feature Scrum teams. Cross-
functional Scrum team members are 100 percent dedicated and are not
influenced by their functional managers during the sprint.

When I heard this, it really resonated with me. A cross-functional Scrum is a Task

Force without the crisis!

 2008 Danube Case Study: Intel Corporation

8

We ran a quick pilot on one content type and the team members loved it. The

handoffs had been greatly reduced. Team members were able to swarm on problems.

Communication and knowledge flowed smoothly. And if a particular team member’s

function wasn’t needed in a sprint, they paired up with another team member to

cross-train and help where they could.

Once again, timing was everything. This cross-functional pilot data rolled in just in

time for our annual offsite leadership meeting. This was a huge opportunity to

influence the organization’s leadership and make a course correction that would allow

Scrum to function even better than before. I presented my observations and the early

data from the single cross-functional pilot and the organization was sold. In fact, all

of the naysayers, as well as the undecided portion of the organization, signed on to

the cross-functional Scrum concept. This added five new Scrums to our process,

bringing our total impact up to 18 Scrums over two years!

RETROSPECTIVE:

I’ve used a simple (+) and (-) scheme to indicate what went well and what didn’t.

Strong Definition of Done (+)

Since we don’t have a ‘real’ programming language, we don’t have a unit test

framework or an offline regression. In microprocessor product development, unit

testing means testing silicon units! This led us to focus on writing good stories and,

most importantly, writing good acceptance criteria. Acceptance criteria (AC) provides

a strong definition of done by detailing the requirements for customer satisfaction.

We also implemented a lightweight verification process that we called the “Pair

Review.” To complete a story, the developer and PO or stakeholder must sit together

and agree that the AC have been met. We collected simple metrics on this activity in

the form of Adds, Saves, and Escapes.

Adds are additional AC that the SH/PO add to the story during the Pair Review

process that are accepted by the developer for the current sprint and are an indication

of ambiguous story AC. Saves are bugs created in this sprint and caught in this sprint.

Escapes are bugs created in a previous sprint and found in the current sprint. Saves

indicate the verification process is working, while Escapes indicate that it needs to

improve.

 2008 Danube Case Study: Intel Corporation

9

Additionally, we had to define a robust validation process. Validation couldn’t be

generalized across the Scrums like verification, so each Scrum documented its

validation rules, essentially defining what it means to be done with validation for its

work product. Validation must ensure the story will function properly in the released

work product and usually involves running devices on the test equipment.

A story is only done if all tasks are done and it has been verified and validated.

No Partial Credit (+)

When determining velocity for the next sprint, no credit is given for stories that are

not “done” based on our definition above. This may seem draconian, but was

necessary to force the team to pay attention to the verification and validation

requirements and make sure their estimates include these steps. It also forces the

team to pay attention to its commitments. If you committed to 100 percent done and

you delivered 90 percent, you failed.

Nine-day Sprints (+)

We sprint for nine days and hold Review, Retrospective, and Planning Meetings every

other Friday. This way the team is always outside of a sprint every other weekend.

This greatly helped improve the quality of life and morale of the Scrum teams.

Conversely, every other weekend was in the middle of the Sprint and team members

could decide amongst themselves if they needed to work the weekend to meet their

goals. This happened rarely after the first six months and we have achieved a

repeatable cadence and a sustainable pace.

Cadence (+)

The nine-day sprint cadence allowed POs, BOs and teams to change direction as

necessary, at frequent intervals. This cadence actually helped reduce the requirements

thrash that we had seen on previous projects and high-level managers began to see

that the team was able to produce real work product every other Friday. Data we

collected showed that 10 to 20 percent velocity was lost when a sprint was

significantly interrupted. We called this the “sprint interrupt tax.” Ten percent of

velocity was lost if the interruption came in the first week of the sprint and 20 percent

if it came in the second week. Managers were made aware of this statistic. They began

to respect the cadence of the planning cycles. We also added a rule that any change to

an active sprint forces a renegotiation of scope. Again, management responded and

 2008 Danube Case Study: Intel Corporation

10

when interruptions were needed, they usually came prepared to swap out items from

the sprint backlog.

PO on the Team (-)

As a means of facilitating better communication between Product Owners and the

team, we allowed Product Owners to serve as participating members of each team. In

some cases, it worked quite well, but in others, POs micromanaged the teams,

dictating day-to-day tasks, and impeding honest communication between team

members. This has led to teams holding secret meetings to discuss real organizational

impediments out of the view of their PO/functional manager. Although these

situations appear to be resolving over time, they have crippled the team’s ability to

self-organize. When we built the cross-functional Scrums, we disallowed this practice.

Central Scrum Tooling (+)

Scrum requires bookkeeping to generate useful metrics, like the burn down chart,

every day. This is especially true when running multiple Scrums or Scrum-of-Scrums

in your organization. Having a central, open-access tool contributed greatly to the

success of the transition. When we started our journey, I couldn’t find tooling to

support the Scrum- of-Scrums, so we created our own. We started with XPlanner and

customized it significantly with Java and SOAP into something we called

“XPlanner2.” Based on those learnings, we created a custom Windows application.

This central tool has been a key enabler for managing multiple teams. While I believe

that you must have tooling to enable and facilitate large-scale Scrum, the available off-

the-shelf offerings have matured to the point which I probably wouldn’t take this

homegrown approach again.

Huge Backlogs (-)

Managing an “all access backlog” is also a challenge. If anyone, at any time, can add

anything to a team’s backlog, it can feel like the team is being bombarded with

requests. Some POs wanted to lock down their backlogs which don’t allow for input

from other team members or stakeholders. Our tool for Scrum puts “new” stories in

a different pile than “accepted” Stories. The PO can then review each new story,

discuss with stakeholders, and decompose the story appropriately. We also

implemented a “freezer” for stories that we knew we wouldn’t get to for a few

sprints. Stakeholders could see that their requests were in the freezer and the main

backlog was only three to five sprints deep.

 2008 Danube Case Study: Intel Corporation

11

Story Points (+)

Since most teams didn’t have a common frame of reference, most Scrums used ideal

days. Relative size is better, but harder to get in most of my Scrums. We had to watch

our use of the word “days” when talking with upper-level managers unfamiliar with

Scrum. We quickly moved to talking about “points” when reviewing data with

outsiders.

Tasks Take Less than a Day (+)

Throwing hour estimations out the window was liberating for the teams and

managers. Stories are assigned a degree of “difficulty” in story points and tasks are

simply items that are binary – either done or not done. A task is always less than a

day, so if a person is working on a task for more than a day, we know they’re

probably impeded.

Burndown Observations in the Daily Scrum (+)

Metrics and visual representations of status were also vitally important to success to

date. A visible sprint burndown chart proved effective in warning teams if they’re

falling behind and has prompted conversations with POs about status, prior to the

end of a sprint. The ScrumMaster brought in the burndown chart every day. As a

result, no one walks into a review meeting shocked that something did or did not get

accomplished.

Incremental Review (+)

We didn’t like waiting until the Review meeting to seek approval from the PO. Our

Pair-Review verification process encouraged the PO and developer to sit together as

soon a story was deemed ready for verification. This eliminated most of the surprises

in the Review meeting where the final work product was reviewed. It also made for a

much shorter meeting.

Velocity (+)

Visibility of backlog, progress reports, and overall metrics help adjust manager

expectations frequently so they can make business decisions based on the actual

accomplishments of the teams. Velocity metrics force POs to schedule work to

capacity. After all, you can’t get 80 story points out of a 50-point team.

Executive Sponsorship (+)

 2008 Danube Case Study: Intel Corporation

12

Support has been a crucial win for both teams and managers. Without high-level

support from the organization’s manager, the transition wouldn’t have been

successful. Upper management provided structural support, incentives for those who

took a leadership role on teams, and gave them career credit for their contributions.

Leadership also provided disincentives for those who elected to subvert the process.

Human impediments were “repurposed” to ensure success, but we didn’t lose any

people in the transition.

Changing Behaviors (+)

Finally, behavior is not learned unless it’s practiced. My team has learned that the

practice of Scrum begets better Scrum behavior and results. By consistently

negotiating scope, practicing prioritization, authoring clear requirements, adhering to

time boxes, keeping an eye on the metrics, and aiming for team self-organization,

Scrum survives and thrives two years after taking our first steps.

RESULTS

Scrum has made an impact in four major ways: Cycle Time, Performance to Schedule,

Morale, and Transparency.

Reduced Cycle Time

• Scrum was a major contributor to a 66 percent reduction in cycle time.

Performance to Schedule

• We have established and maintained capacity-based planning and a two-

week cadence for more than a year.

• We have virtually eliminated schedule slips and missed commitments.

• Customers and upper management are changing their behaviors to protect

the two-week cadence.

Improved Morale

• Improved communication and job satisfaction.

• What was lowest morale team is now best performing team.

Increased Transparency

• Led to adoption of formal, CMMI style, VER, and VAL standards.

• Scrum has uncovered bugs, impediments, weak tools, and poor engineering

habits.

 2008 Danube Case Study: Intel Corporation

13

Scrum has been a major contributor to a consistent, repeatable, 66 percent cycle time

reduction in the creation of our work product. While we also underwent some major

tooling improvements, I believe that Scrum contributed on the order of 50 percent of

those gains.

The nine-day sprint cadence provides robust schedule predictability. This

predictability has actually led to less thrash in team requirements as management

seeks to avoid paying the interrupt tax. We simply don’t miss deadlines any more

through aggressive management of priority and scope.

Job satisfaction comes from consistently hitting goals established with velocity-based

planning. The team feels incredible pride in its ability to make and meet

commitments. Morale is much higher and the sustainable pace is greatly valued in the

organization.

Many, many traditional engineering practices and systems are being questioned as

Scrum makes inadequacies more visible. This has led us to invest in additional

infrastructure to allow us to adopt even more agile practices.

SUMMARY

Scrum has served us very well in Product Development Engineering. Word of our

success is spreading across the company and I have been spreading the word on the

benefits of Scrum.

We had many false starts along the way and had to learn a lot of hard lessons.

However, we had strong commitment from our management and a tight cadre of

Scrum believers that kept us coming back to make it better.

In the end, I think we have made great strides at changing our organization from a

command-and-control, plan-based organization into an inspecting and adapting, self-

organizing, empirical planning-based organization.

I was teaching an internal “Introduction to Scrum” class and a few members from my

organization were in attendance. Halfway through the class, one of them came up

 2008 Danube Case Study: Intel Corporation

14

during a break and said, “It’s funny, but I didn’t know there were rules. This is just

the way I work.” Changing behaviors is a long, hard journey, but worth the effort.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the folks at Danube Technologies, Inc. for their

training, patient coaching, and problem solving when the need arose.

I would also like to thank Mary and Tom Poppendieck for giving us insight into the

proper use of cross-functional teams.

BIBLIOGRAPHY

Agile Software Development with Scrum by Ken Schwaber

Implementing Lean Software Development by Mary and Tom Poppendieck

Lean Product and Process Development by Allen Ward

Datamation Proceedings, 1968 by Melvin Conway

